При построении моделей экосистем применяют методы общесистемного анализа. В первую очередь это - выделение из системы отдельных структурных элементов, таких как живые и косные компоненты, среди живых - трофические уровни, виды, возрастные или половые группы, взаимодействие которых и будет определять поведение всей системы. Другой важный элемент - установление характера процессов, в которых участвует каждый элемент (процессы размножения и роста, взаимодействия типа хищничества, конкуренции и т.д.) Часто в экологическом моделировании используются балансовые компартментальные модели, когда рассматриваются потоки вещества и энергии между составляющими модель компартментами, содержание "вещества" в каждом из которых и представляет собой отдельную переменную системы.
Необходимость описывать экологические взаимодействия послужила толчком для развития системных исследований. По словам одного из иснователей общей теории систем Людвига фон Берталанфи "работы Вольтерра, Лотки, Гаузе и других по теории популяций принадлежат к классическим трудам общей теории систем. В них впервые была продемонстрирована возможность развития концептуальных моделей для таких явлений как борьба за существование, которые могут быть подвергнуты эмпирической проверке." (Л.Берталанфи.Общая теория систем. Критический обзор. 1969)
Широко используется принцип изоморфизма, позволяющий сходными математическими уравнениями описывать системы, разные по своей природе, но одинаковые по структуре и типу взаимодействия между элементами, их составляющими.
Работа с имитационной моделью требует знания величин параметров модели, которые могут быть оценены только из наблюдения и эксперимента. Часто приходится разрабатывать новые методики наблюдений и экспериментов с целью установления факторов и взаимосвязей, знание которых позволяет выявить слабые места гипотез и допущений, положенных в основу модели. Весь процесс моделирования - от построения моделей до проверки предсказанных с ее помощью явлений и внедрения полученных результатов в практику - должен быть связан с тщательно отработанной стратегией исследования и строгой проверкой используемых в анализе данных.
Это положение, справедливое для математического моделирования вообще, особенно важно для такой сложной науки как экология, имеющей дело с разнообразными взаимодействиями между огромным множеством организмов и средой их обитания. Почти все эти взаимодействия динамические в том смысле, что они зависят от времени и постоянно меняются, причем как правило включают в себя положительные и отрицательные обратные связи, то есть являются нелинейными. Сложность экосистем усугубляется с изменчивостью самих живых организмов, которая может проявляться и при взаимодействии организмов друг с другом (например, в процессе конкуренции или хищничества), и в реакции организма на изменения окружающей среды. Эта реакция может выражаться в изменении скорости роста и воспроизведения и в различной способности к выживанию в сильно различающихся условиях. К этому добавляются происходящие независимо изменения таких факторов среды как климат и характер мест обитания. Поэтому исследование и регулирование экологических процессов представляет собой исключительно сложную задачу.
Экспериментальное и натурное наблюдение экологических процессов осложняется их длительностью. Например, исследования в области земледелия и садоводства связаны главным образом с определением урожайности, а урожай собирают раз в год, так что один цикл эксперимента занимает год и более. Чтобы найти оптимальное количество удобрений и провести другие возможные мероприятия по окультуриванию, может понадобиться несколько лет, особенно когда необходимо рассматривать взаимодействия между экспериментальными результатами и погодой. То же касается процессов, проходящих в аквакультуре, например, при разработке оптимальных режимов содержания рыбоводных прудов. В лесоводстве из-за длительности круговорота урожаев древесины самый непродолжительный эксперимент занимает 25 лет, а долговременные эксперименты могут длиться от 40 до 120 лет. Аналогичные временные масштабы необходимы для проведения исследований с другими природными ресурсами. Поэтому математическое моделирование является необходимым инструментом в экологии, природопользовании и управлении природными ресурсами.
Дополнительная информация:
© 2001-2024 Кафедра биофизики МГУ